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Abstract

Analytical solutions are obtained for flows in downwardly inclined ducts, partly filled by a liquid and

containing finite amplitude moving jumps. A unified theory for both roll waves and periodic slug flows in

rounded ducts of arbitrary cross-section is worked out by means of some simplifications. The article is

focused on slugs: a set of equations is obtained, which predicts the transition between roll waves and slug

regimes and gives access to all flow characteristics without any need of closure laws concerning either the

speed of propagation or the slug length. As a result, we gain a new insight on the physical structure of slug
flow. The proposed model is valid for sufficient inclination, small pressure gradient along the duct and

negligible superficial tension. Owing to assumptions, only main trends and orders of magnitude observed in

experiments are to be checked. In this connection the model fits most of the previously published experi-

mental results obtained in ducts of circular cross-section: the domain of occurrence of downwardly

propagating slugs is satisfactorily predicted, the limitations in drift velocity and in liquid layer thickness are

demonstrated and upwardly propagating slugs are possible.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Roll waves and slug flow

Two phase gas–liquid flows in nearly horizontal ducts are of considerable interest in industry
processes and equipments. Over a range of flow rates two complex regimes are met, namely roll
*
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waves and slugs, which have some common features for they exhibit a periodic structure moving
with a constant velocity. Roll waves consist of a periodic pattern of bores separated by continuous
profiles of the interface, whereas slugs present successive cells made of liquid plugs which are
separated from one another by a liquid layer topped by a gaseous bubble.

During the three last decades of the 20th century, investigation of slug flow, principally insti-
gated by petroleum industry needs, has been intensive. One of the main reasons for carrying out
research in this domain is the generation of vibrations induced by slugs, which may be followed by
destructive damage in case of resonance.

The relation between flow conditions and slug occurrence has been modelled on the bases of
continuous one-dimensional conservative laws for each phase (Dukler and Hubbard, 1975; Taitel
and Dukler, 1976; Taitel and Barnea, 1990). Supplementary laws expressing empirical correlations
about the wall to fluid and the interface interactions are necessary in order to operate with a full
set of equations, able to provide velocities, pressure drops and characteristic lengths if the liquid
and gas fluxes are known.

The first aim of scientists has been to draw up maps of flow patterns in terms of liquid and gas
input rates (Barnea et al., 1980; Barnea and Taitel, 1986) essentially by visual observation, and
later with the help of void fraction detection and pressure fluctuation measurements.

The sudden increase in both the liquid level and the pressure observed at the passage of a slug
has raised the occurrence of associated abrupt jumps (Fan et al., 1993). Our first purpose in the
present article will be to take this characteristic into account when working out the new model.

The transition from smooth stratified flow to complex regimes is usually tackled by resorting to
stability theory (Lin and Hanratty, 1986; Boudlal and Dyment, 1996; among others). When it is
perturbated, a steady flow becomes unstable if certain criteria are satisfied and it evolves towards
wave breaking, which gives rise to roll waves. Attempts have been made in order to understand
this unsteady nonlinear process for a liquid flowing in board open slightly inclined channels
(Kranenburg, 1992; Yu and Kevorkian, 1992) and for a two layer system (Liapidevskii, 2000).
Roll waves themselves may be unstable and slugging may be initiated by waves growing in
amplitude, steepening and coalescing, with their crests touching the top of the conduit (Woods
et al., 2000).

1.2. The frame of the present model

The gas–liquid flows considered herein are simple ones in order for the analytical approach to
go as far as possible. They take place in down sloping cylindrical ducts.

The liquid flows subject to gravity and friction forces acting on the wall. The interfacial friction
and the gas friction at the wall are neglected and the gas pressure is considered as almost constant,
which implies that the gas momentum rate is small enough with respect to the liquid one.
(Nevertheless, nothing is prescribed by this assumption concerning the flow rates.) Due to the
contrast in density, previous events are encountered when the velocities of both liquid and gas are
of the same order of magnitude. (The most elementary configuration corresponds to no forced
input of gas, which is only swept along by the running liquid.) These circumstances require the gas
input be not too high and the duct be down sloping with a sufficient inclination, as the gravity is
the single force able to carry off the liquid downwardly. However, at the same time, the slope b is
supposed enough gentle to meet sin b ’ b, cosb ’ 1.
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Further assumptions are made. No dispersed gaseous bubbles are contained in the liquid. The
superficial tension is not taken into account, which requires the transverse dimension of the
conduit to be large enough. As a consequence, the Reynolds number is large too, so the resistance
at the wall can be expressed by standard turbulence laws involving the hydraulic diameter. In this
case, it is known that the streamwise velocity profile is not far from uniform. Thanks to all the
aforementioned simplifications, as long as slugs do not occur, the same formulation will be
obtained as for a liquid flowing alone, beneath a gas at constant pressure.

Two parameters, directly connected to the cross-section shape will play an important part, D ¼
d2ða�2Þ
dh2 and E ¼ dd

dh where h is the liquid level, a the wetted section and d the hydraulic diameter, d ¼ 4a
k ,

k being the wetted perimeter. For all round shaped ducts D is positive whatever h may be (Dyment,
1998). As for E, it turns out that for closed conduits E is necessarily negative past a certain degree of
filling, namely for ~h < h < H , H being the height of the duct section. A linear stability analysis
shows that the flow is unconditionally stable for h ¼ ~h and the more unstable the farther h is from ~h.

Instability gives rise to roll waves with discontinuities, which necessarily represent rising jumps
since D is positive, a result still standing for choked discontinuities, so called because downstream
the duct is entirely filled by the liquid (Dyment, 1998). The passage from roll waves to slugs
consists of piecing together the continuous interface profiles with liquid stubs, one end of which is
matched to the neighbouring liquid layer through a choked bore.

The nature of all periodic waves containing bores is connected to the sign of the critical value
E�. For E� > 0, downwardly propagating roll waves and slugs are obtained, similarly to the roll
waves solution in open channels. When E� < 0, i.e. ~h < h < H , waves moving upward with regard
to the flowing liquid are predicted.

Previous results are plotted in a two-dimensional universal regime map providing the ranges of
possible roll waves and periodic slugs according to their nature, solely in terms of the critical
height and the critical friction factor to slope ratio.

A more usual representation of slugs, with superficial velocities of both liquid and gas,
is introduced. Comparison with available experimental results in circular ducts indicates that
the proposed model is relevant.
2. Geometrical properties of ducts

As the flow in a cylindrical duct which is partly filled by a liquid depends on the cross-section
shape, some geometrical properties of the conduit must be pointed out.

The cross-section is supposed round, smoothly shaped and symmetrical about the longitudinal
vertical plane containing the duct axis. The duct is downwardly inclined with an angle b. The
frame of reference is chosen as follows: the Ox axis is parallel to the direction of the duct with the
origin O at the bottom; Oz is contained in the vertical plane and Oy completes the system of
coordinates. Let y ¼ gðzÞ define the half of the duct corresponding to y > 0 (Fig. 1). z ¼ h rep-
resents the free surface which is independent of y in the frame of the shallow water theory. We

introduce b ¼ gðhÞ, a ¼
R h
0

gdz, k ¼
R h
0
½1þ ðdg

dzÞ
2	1=2 dz, f ¼ 1

a and u by du ¼ adh with uð0Þ ¼ 0.

The hydraulic diameter is d ¼ 4a
k and c ¼ ðgab Þ

1=2
is the wave speed of small disturbances, g being

the gravitational acceleration. Obviously da
dh ¼ b, du

dh ¼ a, c2 ¼ g du
da, so that



Fig. 1. Half cross-section of the conduit.
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a2c2 ¼ �g
du
df

: ð1Þ
Function f is a decreasing one of u with df
du ¼ �1 at the bottom and df

du ¼ 0 at the top where
h ¼ H , a ¼ A, k ¼ K, d ¼ D ¼ 4A

K , u ¼ /, c ! 1 and f ¼ F ¼ 1
A.

An important parameter is the fundamental derivative D (Dyment, 1981, 1998):
D ¼ d2ða�2Þ
dh2

¼ �2g
dða�2c�2Þ

dh
¼ 2

f
d2f
du2

: ð2Þ
For a round smoothly shaped duct, d2b
dh2 is negative, yielding D positive whatever h. Then, it results

from (1) and (2) that f is a decreasing convex function of u.
The second important parameter is
E ¼ dd
dh

¼ 4

k2
kb

0
@ � a 1

"
þ db

dh

� �2
#1=21A: ð3Þ
It may be shown (Appendix A) that d is a concave function of h with d ¼ 0 at h ¼ 0, E ! 1 at
h ¼ H and a maximum at a value of h termed ~h. As a result, except H there is another height hD for
which d is equal to D. When h is higher than hD, a second height, termed hd, exists, providing the
same value of d: the height hd is a decreasing function of h.

As the cross-section is round, its bottom can be locally represented by the osculating parabola

g ¼ ð2RBzÞ1=2, RB being the radius of curvature at the bottom B. In the vicinity of B we have

b2 ’ 2RBh, db
dh ’

RB

b , a ’ b3

3RB
, k ’ b þ b3

6R2
B

, u ’ b5

15R2
B

, c ’ ð2gh
3
Þ1=2, d ’ 8h

3
, E ’ 8

3
and D ’ 27

2RBh5.

At the top T, where the radius of curvature is RT, we have similarly:
g ’ ½2RTðH � zÞ	1=2; b2 ’ 2RTðH � hÞ; db
dh

’ �RT

b
; a ’ A� b3

3RT

;

k ’ K � b� b3

6R2
T

; u ’ / � AðH � hÞ; c ’ gA
b

� �1=2

; d ’ D 1

�
þ b

K

�
;

E ’ �DRT

Kb
and D ’ 2RT

A3b
:



Fig. 2. The hydraulic diameter for circular ducts, ~h ¼ 128:7�, hD ¼ 90�.
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Consider the important example of a circular cross-section of radius R. With the angle h defined
in Fig. 2, we have:
h ¼ Rð1� cos hÞ; b ¼ R sin h; a ¼ R2

4
ð2h � sin 2hÞ; k ¼ Rh;

c2 ¼ gR
4

ð2h � sin 2hÞ
sin h

; d ¼ R
ð2h � sin 2hÞ

h
;

2gd
c2

¼ 8 sin h
h

;

u ¼ R3

2
sin h

�
� sin3 h

3
� h cos h

�
; D ¼ 256ð1þ 5 sin2 h � h cot hÞ

R6ð2h � sin 2hÞ4
and

E ¼ sin 2h � 2h cos 2h

h2 sin h
:

The hydraulic diameter is plotted in Fig. 2. The maximum of d occurs for ~h ’ 128:73� yielding
~h
2R ’ 0:813 and

~d
2R ’ 1:23. The corresponding values of f and u are ~f ¼ 1:149F , ~u ¼ 0:645/, with

F ¼ 2
pR2 and / ¼ pR3

2
.

3. Criteria of stability

3.1. Linear stability analysis

Taking into account all aforementioned assumptions in Section 1.2, the governing equations
expressing the conservation of mass and momentum are:
oa
ot

þ o

ox
ðauÞ ¼ 0; ð4Þ

ou
ot

þ u
ou
ox

þ g
oh
ox

¼ gb � wu2

2d
: ð5Þ
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In previous equations t is the time and w the friction coefficient at the wall. The second equation
is obtained with the help of the hydrostatic distribution of pressure qgðh� zÞ, q being the liquid
density, and the origin of pressure being chosen in the gas which tops the liquid. The gas velocity v
is deduced from a and u with the help of the conservation of mass for both fluids, which expresses
that auþ ðA � aÞv is constant.

The friction factor w is assumed to be
w ¼ cu�md�n; ð6Þ

where c, m and n are constant, with 06m < 1 and 06 n < 1 too. For smooth turbulent flows,
m ¼ n and c ¼ jmm, j being a constant and m the kinematic viscosity. In practice, m ¼ 0:2 and
j ¼ 0:184. For rough turbulent flows, m ¼ 0, and n ¼ 0 or n ¼ 1

3
. The last case corresponds to

Manning’s law when c ¼ 0:3e1=3, e being the mean height of the roughness. As the liquid and gas
velocities are supposed to be of the same order of magnitude, the interfacial shear stress is neg-
ligible because it is proportional to the gas density (Taitel and Barnea, 1990).

To sum up, the pressure gradient and interfacial friction effects are neglected with regard to wall
friction and gravity effects, which implies that the duct inclination is not too small.

We consider a uniform flow (subscript 0). According to (5), u0 and h0 are connected by
w0u
2
0 ¼ 2gbd0: ð7Þ
The resistance law (6) can be written
w
w0

¼ u0
u


 �m d0

d

� �n

: ð8Þ
Now, a small disturbance is superimposed: h ¼ h0 þ h0, u ¼ u0 þ u0.
The linearization of Eqs. (4) and (5), a rearrangement made with the help of (6) and (7) and the

elimination of u0 lead to
u0
ð2� mÞgb

o

ot

�
þ ðu0 � c0Þ

o

ox


o

ot

�
þ ðu0 þ c0Þ

o

ox


ðh0Þ

þ o

ot

�
þ u0 1

�
þ 1þ n
2� m

c20E0

gd0

�
o

ox


ðh0Þ ¼ 0:
Making use of the method promoted by Whitham (1974), the conditions for stability tie the

three speeds of propagation brought to evidence in this equation: u0 � c0 < u0½1þ 1þn
2�m

c2
0
E0

gd0
	 <

u0 þ c0. Conversely, taking (7) into account, the following instability criterium is obtained:
ð1� m=2Þ
ffiffiffiffiffiffiffiffiffiffi
2gd0

p ffiffiffiffiffi
w0

b

s
< ð1þ nÞc0jE0j: ð9Þ
It must be born in mind that this result only delivers a diagnosis of instability.
As it will be shown in Sections 6 and 7, when the state of reference is critical, the instability

criterium expressed by (9) provides necessary conditions for roll waves to form.
When d is an increasing function of h, i.e. E is positive, only one condition remains. That is the

case for two-dimensional flows as d ¼ 4h and c ¼ ðghÞ1=2, so that (9) provides 1þn
2�m ð

8b
w0
Þ1=2 > 1, and

when the regime is rough, the well-known condition 2ð1þ nÞ2b > w0 is recovered (Dressler, 1949).
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For any cross-section and h0 close to zero, (9) is reduced to ð b
2w0

Þ1=2 > 3
8

ð2�mÞ
ð1þnÞ.

For h0 close to ~h, E0 ’ 0 and the flow is unconditionally stable.
On the contrary, when h0 > ~h, E0 is negative and the condition is fulfilled for h close to H as

E ! �1: therefore, when the duct is almost filled, the flow is unstable.
3.2. Influence of flow regime

All previous results may be plotted in the h0
H , ð

w0

b Þ
1=2

plane. As the flow regime is to be taken into
account, the representation must involve the characteristic Reynolds number Re ¼ u0d0

m ¼
d0
m ð2gd0

b
w0
Þ1=2.

Let ReL be the transitional value of Re between laminar and smooth turbulent regimes and ReT
the value separating the two turbulent regimes. Obviously, smooth turbulent flows are observed

when ReL
ffiffiffiffi
w0

b

q
< d0

m

ffiffiffiffiffiffiffiffiffiffi
2gd0

p
< ReT

ffiffiffiffi
w0

b

q
.

Calculations have been performed for a circular duct of radius R. With the help of formulae

given at the end of Section 2 the instability criterium (9) becomes
ffiffiffiffi
w0

b

q
< 2ð1þnÞ

2�m
j sin 2h�2h cos 2hj

ð2h sin hÞ3=2
. As for

the Reynolds number, Re ¼ R
m ð2gR

b
w0
Þ1=2ð2h�sin 2h

h Þ3=2. Consequently, the transition between the two

turbulent regimes is represented in the h, ðw0

b Þ
1=2

plane by the curve
ffiffiffiffi
w0

b

q
¼ ð2gR3Þ1=2

mReT
ð2h�sin 2h

h Þ3=2.
A similar formula, with ReT replaced by ReL, holds for the transition from laminar to smooth

turbulent regime.
Fig. 3 represents the domains where the flow is stable and unstable, together with transition

curves corresponding to a duct of radius R ¼ 0:0125 m, to water and to the conventional values
ReL ¼ 1500 and ReT ¼ 50000. The radius R only interferes in the values of the Reynolds number:
it has been chosen in relation with the experimental validation presented in Section 8.1. In the
Fig. 3. Stability diagram for circular ducts, with m ¼ 0, n ¼ 1=3 for rough turbulent flow. The curves concerning ReL
and ReT correspond to water and R ¼ 0:0125 m: –– neutral stability; – Æ – ReL ¼ 1:5� 103; – – – ReT ¼ 5� 104.
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region of smooth turbulent flow, m ¼ n ¼ 0:2 has been set, whereas in the rough turbulent region
m ¼ 0 and n ¼ 1=3. It has been checked that the neutral stability curve is almost the same for
n ¼ 0 and n ¼ 1=3.
4. Discontinuities of finite amplitude

We recall hereafter the main properties concerning discontinuities of finite amplitude which
have been brought to evidence recently (Dyment, 1998). Consider a stationary jump in a steady
flow. The velocity and height are u0 and h0 upstream and u and h downstream. The equations of
conservation of mass and momentum give
u0
f0

¼ u
f
¼
�
� g

u � u0

f � f0

�1=2

; ð10Þ
and since the variation in energy cannot be positive, hP h0 is obtained, resulting from D > 0. As a
consequence u0 P c0 and u6 c hold: so the velocity is supercritical upstream and subcritical
downstream.

Thus, qualitatively, all results valid in rectangular channels are generalized for conduits of
round shaped cross-section.

According to (10), h is an increasing function of u0. For a certain value of u0 given by (10) with
/ and F in place of u and f , the top of the conduit is reached downstream and a plug is formed:
that is an incipient choked discontinuity.

When u0 is larger, that is
u0
f0

>

�
� g

/ � u0

F � f0

�1=2

; ð11Þ
the discontinuities are choked. By contrast, discontinuities with h < H will be called free.
Let qgðH � zÞ þ P be the pressure inside the plug: the pressure at the top, P , is merely induced

because the liquid is impeded to spread vertically. The conservation of mass and momentum leads
to (Dyment, 1998)
P
qF

¼ u20
f 2
0

ðf0 � F Þ � gð/ � u0Þ ¼
U 2

F 2
ðf0 � F Þ � gð/ � u0Þ; ð12Þ
with P positive due to (11).
Similarly to free discontinuities, the flow is still supercritical upstream and, as c ! 1 when

h ! H , it is subcritical downstream.
It can easily be deduced from (12) that for a given value of u0 dP

qF dh0
¼ b0ðc20 � u20Þ, so that P is a

decreasing function of h0, tending to infinity when h0 tends to zero. Using expansions, we obtain

for h0 � H , i.e. u20 > g/f0: P ¼ 2qu2
0

3A h0b0.
The results summarized in this section represent an important breakthrough for the inves-

tigation of all flows containing hydraulic discontinuities. Particularly, the property stating that,
in round conduits, particles crossing a discontinuity cannot undergo a decrease in height, is of
great importance. Previously, as long as the shape of the cross-section was not specified, jumps
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accompanied by a rise or a fall on the liquid level could be anticipated according to the sign of
D, though the occurrence of D negative is rare (Dyment, 1998). Henceforth this ambiguousness
is removed, which will make easier the study of roll waves and slugs undertaken in what
follows.
5. Periodic waves containing bores

5.1. Flow in the liquid layer

We intend to construct wave solutions containing periodic structures propagating with a
constant speed x. Therefore x� xt ¼ n becomes the single variable, the flow being steady in the
frame of reference accompanying the waves.

In what follows, the waves will be termed travelling downward/upward according to the
direction of propagation with respect to the moving liquid and, progressive/regressive when the
fixed reference is considered.

Eq. (4) integrates to give
ðx � uÞa ¼ q: ð13Þ

As defined by (13), q is the opposite of the relative discharge. The discharge q may be positive or
negative according to whether x is larger or smaller than u. However, u being positive as the fluid
is supposed flowing downwardly, we must have x > q

a.
Eq. (5) becomes
1

�
� q2

a2c2

�
dh
dn

¼ b � w
2gd

x



� q
a

�2
; ð14Þ
where the left-hand side is simply d
dn ðhþ

q2

2ga2Þ.
As a, c, d and w are constant for a given value of h, Eq. (14) provides a definite value of dh

dn,
which means that h is monotonous, a result inconsistent with a continuous periodic wavy solu-
tion. Thereby, a discontinuity exists at one end of every unit structure and consequently critical
conditions exist too. The critical height, say h�, is unique because D is positive (Dyment, 1981).
From Section 4, we know that h� lies between the upstream and downstream heights of the bore,
h1 and h2, h2 being equal to H when the bore is choked. We have q2 ¼ a�

2
c�

2
and as in any critical

section the left-hand side of Eq. (14) cancels, the same occurs for the right-hand side: so, b must be
positive, as might be foreseen, and ðx � q

a�Þ
2 ¼ u�

2

where u� is the uniform flow velocity under
critical conditions, defined by formula (7):
u� ¼ 2gd�b
w�

� �1=2

: ð15Þ
Unambiguously,
x ¼ q
a�

þ u� ð16Þ
is obtained because u ¼ x � q
a is positive since downflows are considered.
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Thanks to (15), (16) and (8), Eq. (14) becomes
1

 
� a�

2

c�
2

a2c2

!
dh

bdn
¼ S; ð17Þ
with
S ¼ 1� d�

d

� �1þn u
u�


 �2�m
: ð18Þ
According to (15) the function S depends on two parameters, h� and
ffiffiffiffi
w�

b

q
.

As previously explained h is a monotonous function of n. The sign of dh
dn will be prescribed by the

jump condition h2 > h1. On the other hand the sign of 1� a�
2
c�

2

a2c2 is the same than that of h� h�

because, thanks to (2), d
dh ð1� a�

2
c�

2

a2c2 Þ ¼ a�
2
c�

2

2g D is positive. Finally, dh
dn and ðh � h�ÞS must have the

same sign.

Two cases can be encountered depending on the sign of q. They will be analyzed in detail in
Sections 6 and 7.

5.2. Flow across free and choked discontinuities

Let us now express the relations to be satisfied across a free discontinuity.
For a downward travelling bore, Eqs. (10) give x�u1

f1
¼ x�u2

f2
¼ ðg u2�u1

f1�f2
Þ1=2 so that, taking

ðx � u1Þa1 ¼ ðx � u2Þa2 ¼ a�c� into account,
gðu2 � u1Þ ¼ a�
2

c�
2ðf1 � f2Þ ð19Þ
can be deduced.
For an upwardly travelling bore, we have u1�x

f1
¼ u2�x

f2
¼ ðg u2�u1

f1�f2
Þ1=2 and ðu1 � xÞa1 ¼

ðu2 � xÞa2 ¼ a�c�, with the result that (19) still holds.
Thanks to (1), Eq. (19) can be written
f2 � f1
u2 � u1

¼ df
du

� ��

: ð20Þ
Thereby, the straight line joining the points representative of the upstream and downstream of the
discontinuity is parallel to the tangent drawn at the point corresponding to the critical state (Fig.
4). As a consequence, the condition for free discontinuity occurrence is u1 > ui, ui being the
upstream value of u1 when u2 ¼ /, defined by
g
/ � ui

F � fi
¼ �a�

2

c�
2

: ð21Þ
As ui and fi are the values of u and f yielding the incipient choked discontinuity corresponding
to the critical height h�, for u1 < ui the discontinuity is choked.

It is obvious from Fig. 4 that ui is an increasing function of u�.
For small values of hi, Eq. (21) becomes
g/b3i ¼ 3RBa�
2

c�
2

: ð22Þ



Fig. 4. Free bores for given critical height: ui < u1 < u�.
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When h� itself is small,
9R2
B/b3i ¼ b�

8

: ð23Þ

At the top, hi ¼ h� ¼ H , and in the vicinity of the top, an expansion provides
2bi ¼ 3b�: ð24Þ

For a circle, the relation between hi and h� expressed by (21) is drawn in Fig. 5. As for relations

(22)–(24) they become h3
i ¼ 3p

2
ð a�

pR2
2

Þ2 c�
2

gR, h3
i ¼ 2

9p h�8 and 2hi ¼ 3h� � p.

Let us come now to choked bores.
For a downwardly propagating bore, conservation of mass allows to write ðx � UÞA ¼ a�c�, U

being the velocity inside the liquid plug. Then
x ¼ U þ c�F
f � : ð25Þ
For an upwardly propagating bore, ðU � xÞA ¼ a�c�, and
x ¼ U � c�F
f � : ð26Þ
In both cases, according to (12), just at the top of the plug, the downstream pressure P is given by
P
qF

¼ a�
2

c�
2ðf1 � F Þ � gð/ � u1Þ: ð27Þ
Thanks to (1), this relation may be written
F � f1 ¼ /

�
þ P

qgF
� u1

�
df
du

� ��

: ð28Þ
According to (27), P is an increasing function of h� and a decreasing function of h1.



Fig. 5. The relation between critical and incipient choked discontinuity conditions for circular ducts.

Fig. 6. Choked bores for given critical height: u1 < ui < u�.
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The comparison between formulae (20) and (28) shows that a diagram similar to that of Fig. 4
can be drawn, f2 being replaced by F and u2 by / þ P

qgF (Fig. 6).
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It follows from all previous results illustrated in Figs. 4 and 6, that roll waves occur for
ui < u1 < u� and slugs for u1 < ui < u�.

All properties brought to evidence in this section will now be used in order to investigate
successively downwardly and upwardly propagating waves.
6. Downwardly travelling waves

6.1. Necessary conditions for the existence of downward roll waves

In this section, we consider downwardly travelling waves corresponding to q ¼ a�c�, which
involves x > u according to (13). Then, Eq. (16) provides
x ¼ u� þ c�; ð29Þ

and when reported in (13),
u ¼ u� þ c�
ða� a�Þ

a
: ð30Þ
Consequently, (18) and (15) lead to
S ¼ 1� d�

d

� �1þn

1

"
þ c�ffiffiffiffiffiffiffiffiffiffi

2gd�p
ffiffiffiffiffi
w�

b

s
1

�
� a�

a

�#2�m

: ð31Þ
In the frame of reference accompanying the waves, the fluid moves from the right to the left, and
as h2 must be larger than h1, we have dh

dn > 0.
When expanded in the vicinity of h�, Eq. (17) becomes
a�
2

c�
2

d�D�

2gb
dh
dn

¼ ð1þ nÞE� � ð2� mÞ gd�

u�c�
: ð32Þ
As dh
dn is positive, we must have E� > 0, so that the necessary condition
h� < ~h ð33Þ

must be satisfied. The right-hand side of (32) must be positive, hence, as might be expected, the
instability condition for h� < ~h found in Section 3.1, is recovered, the state of reference being the
critical one. Taking (15) into account, we obtain
ffiffiffiffiffi

w�

b

s
<

ð1þ nÞ
ð1� m=2Þ

c�ffiffiffiffiffiffiffiffiffiffi
2gd�p E�: ð34Þ
Let us now inspect what happens when h is far from h�, bearing in mind that dh
dn > 0 implies

ðh � h�ÞS > 0.
When h < h�, S must be negative. Now, for h < h� we have u < u�, according to (30). As a

consequence, d must necessarily be smaller than d�, which is consistent with h < h�.
When h > h�,S must be positive. Here u > u�, so that d > d� is necessary. Bearing in mind that

when h� is larger than hD, a second value h�d exists which is such that d ¼ d�. If h� < hD, the



Fig. 7. Downwardly travelling waves. (a) h� < hD; possible slug flow; (b) h� > hD; no slug flow.
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condition d > d� is fulfilled (Fig. 7a). If h� > hD, which only holds in the interval ðh�; h�dÞ, roll
waves cannot reach the top of the duct (Fig. 7b).

Indeed, the solution cannot exist over the whole height of the duct. Let ðhI ; hSÞ be the interval
where the waves can occur: hI is the highest root of equation S ¼ 0 below h� and hS is the lowest
root above h�.

The derivative of S is
Fig. 8

(a) th
dS

dh
¼ ð1þ nÞc�a�

d�u�a
d�

d

� �2þn u
u�


 �1�m auE
a�c�

�
� 4

ð2� mÞb
ð1þ nÞk


:

At h ¼ h�, S is zero and dS
dh is positive according to (34). The curve representative of S versus h

starts at the value hU where u vanishes: it is defined by aU
a� ¼ c�

u�þc� so that hU < h� (Fig. 8).
At h ¼ hU , we have S ¼ 1 and dS

dh ¼ 0. Consequently, the root hI always exists and it is situated
between hU and h�. Consider the roots of the expression between brackets in dS

dh , defined by
E ¼ 4ð2�mÞa�c�b

ð1þnÞkau . From what precedes, there is one root between hI and h�. As au and k
b are increasing

functions of h, b
kau decreases from infinity at hU to zero at H , and then, owing to the known

variations of E, there is necessarily a second root larger than h�. Consequently,S may cancel only
once for h larger than h�, say at h ¼ hS (Fig. 8). When hS does not exist slug flow is possible.
At h ¼ H , we have dS

dh ! �1 and at h ¼ ~h, dS
dh is negative.
. Variation of S for downwardly travelling waves: (a) – – – possible slug flow; (b) –– no slug flow. w
b is smaller for

an for (b).
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The variation of S in terms of w�

b depends on the derivative with respect to this parameter,
which may easily be expressed from (31). This derivative and h � h� have like signs, therefore S
increases with w�

b for h < h� and decreases for h > h�. In particular, the root hI increases with
w�

b
(Fig. 8).

Roll waves take place if h1 > hI and h1 > hi (Fig. 4). According to (17), one among the smooth

portions of the free surface is represented by bn ¼
R h
Hð1� a�

2
c�

2

a2c2 Þ dh
S
, the origin of n being taken

at h ¼ H . The wavelength L is given by bL ¼
R h2
h1
ð1� a�

2
c�

2

a2c2 Þ dh
S
.

6.2. Necessary conditions for the existence of downward slugs

Slug flow is possible if the crests of the roll waves may reach the top of the duct, namely in case
of Fig. 7a, that is for
h� < hD: ð35Þ

Starting from a case when SðHÞ < 0 (Fig. 8, curve b), slugs may be obtained by decreasing w�

b in

order to yield SðHÞ positive. Obviously, it results from Fig. 6 that slugs may exist only when h1 is
smaller than hi. However, as h1 must be larger than hI the necessary condition
hi > hI ð36Þ

is to be fulfilled. For a given value of h� the interval ðhI ; hiÞ decreases with increasing w�

b since hI

increases whereas hi remains constant.
As SðHÞ must be positive for h� 6 h6H , no root hs exists and the necessary condition

SðHÞ > 0 is required, i.e.
D
d�

� �1þn
2�m

� 1 >
c�

u�
1

�
� a�

A

�
: ð37Þ
The properties of both jumps and smooth profiles of the interface can be gathered because the
variation of S versus u and h are similar as dS

dh ¼ a dS
du . The resulting global diagram for slug flow

is presented in Fig. 9.
The pressure in the gaseous bubble being zero and the pressure gradient along the duct being

negligible, the pressure P behind the discontinuity is balanced by the frictional resistance loss
P ¼ gb

�
� WU 2

2D

�
qLp; ð38Þ
where W is the friction factor of the plug flow and Lp the length of the plug.
The elimination of P between (27) and (38) leads to
c�
2

f �2 ðf1 � F Þ � gð/ � u1Þ ¼ gb

�
� WU 2

2D

�
Lp

F
: ð39Þ
The velocity U is obtained from (30):
U ¼ u� þ c� 1

�
� F

f �

�
: ð40Þ



Fig. 9. Global diagram for downward slug flows: uI < u1 < ui, SðHÞ > 0.
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The jump is situated at the rear of the gaseous bubble and it moves faster than the liquid inside the
plug.

The conservation of mass for both liquid and gas is expressed by auþ ðA � aÞv ¼ AU . Taking
(30) and (40) into account v ¼ x is obtained: the gas velocity is everywhere equal to the speed
of propagation. The comparison with (30) shows that the gas moves faster than the liquid.

The friction factors W and w� are connected by a relation similar to (8),
W
w� ¼

u�

U

� �m d�

D

� �n

; ð41Þ
which allows to transform (38) into P ¼ ½1� ðd�DÞ
1þnðUu�Þ

2�m	qgbLp.
Therefore, P is connected to the expression of the function S at the junction between the plug

and the smooth profile of the interface:
P ¼ qgbLpSðHÞ: ð42Þ

Then, thanks to (17), P

qgLp
is equal to the slope dh

dn at h ¼ H .
Afterwards, with the help of (15), (39) and (41), Lp can be expressed in terms of h�, w�

b and h1:
bLp 1

8<
: � d�

D

� �1þn

1

"
þ c�ffiffiffiffiffiffiffiffiffiffi

2gd�p
ffiffiffiffiffi
w�

b

s
1

�
� F

f �

�#2�m
9=
; ¼ Fc�

2

gf �2 ðf1 � F Þ � F ð/ � u1Þ: ð43Þ
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Concerning the bubble length Lg, it is deduced from the expression of L for roll waves, h2 being
replaced by H :
bLg ¼
Z H

h1

1

 
� a�

2

c�
2

a2c2

!
dh
S

: ð44Þ
The wavelength is L ¼ Lg þ Lp and the frequency is equal to u�þc�

LpþLg
.

It has been seen in Section 4 that P is a decreasing function of h1, so that the same holds for Lp

according to (38). Besides, formula (43) indicates that Lp increases with
ffiffiffiffi
w�

b

q
.

For given h� and
ffiffiffiffi
w�

b

q
, the maximum of P and Lp is obtained when h1 ¼ hI , as can easily be

checked in Fig. 9. Then, according to (17), the slope of the interface is zero upstream of the jump.
The solution is simplified when h� is small enough to provide a steep slope of the curve rep-

resentative of f in Fig. 9 at u ¼ u�. Then, according to (21) the height hi is very small and (22) can
be used, with the pressure P given by the last formula of Section 4, where u0 is to be replaced by

x � u1 ¼ a�c�

a1
, providing P ¼ 3qa�

2
c�

2

2Að2RBh3
1
Þ1=2

.

6.3. The domain of downward slug occurrence

The domain of downward slug flows in the plane of parameters h� and
ffiffiffiffi
w�

b

q
must be situated

under the neutral stability curve corresponding to (34), that is
ffiffiffiffiffi
w�

b

s
¼ 1þ n

2� m
E� c�ffiffiffiffiffiffiffiffiffiffi

2gd�p : ð45Þ
For very low w�

b , hI tends to zero, S is almost equal to 1� ðd�DÞ
1þn

and so it is positive for h > h�

since h� < hD. Therefore, the condition SðHÞ > 0 is fulfilled and slug flow may exist. When w�

b is
increased at given h�, hi remains unchanged, whereas SðHÞ decreases and hI increases, hence
occurrence of slug flow disappears, either because SðHÞ becomes zero or because hI becomes
equal to hi. Consequently, the domain of downward slugs is bounded by either the graph
SðHÞ ¼ 0, with P ¼ 0 according to (42), i.e. h1 ¼ hi, or by the graph hI ¼ hi, i.e. SðhiÞ ¼ 0, as
SðhIÞ is zero by definition.

Taking (15) and (31) into account, we obtain respectively
c�ffiffiffiffiffiffiffiffiffiffi
2gd�p 1

�
� a�

A

� ffiffiffiffiffi
w�

b

s
¼ D

d�

� �1þn
2�m

� 1 ð46Þ
and
c�ffiffiffiffiffiffiffiffiffiffi
2gd�p 1

�
� a�

ai

� ffiffiffiffiffi
w�

b

s
¼ di

d�

� �1þn
2�m

� 1; ð47Þ
hi and h� being connected by (21).
The neutral stability curve is already known. It cuts the h� axis at ~h, and the

ffiffiffiffi
w�

b

q
axis at

ffiffi
8

p

3
1þn

1�m=2
.
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The curve relative to the condition at the top cuts the
ffiffiffiffi
w�

b

q
axis at hD and when h� tends to zeroffiffiffiffi

w�

b

q
¼ ð24Dh� Þ

1þn
1�m=2 ! 1 is obtained.

The last curve, Eq. (47), can cut the
ffiffiffiffi
w�

b

q
axis only at the origin because elsewhere di ¼ d� is not

possible. Close to the origin and with the help of (23), an expansion gives
ffiffiffiffi
w�

b

q
¼ 16

9/ ðRBh�
5Þ1=2.

Application is made to circular ducts with m ¼ 0, n ¼ 1=3 in Fig. 10. Roll waves are possible
over the whole region beneath the neutral stability curve, whereas slug flow can occur only within
the domain DS where S is positive and hI smaller than hi. The longest plug and highest over-
pressure correspond to h1 ¼ hI . The widest interval for slug occurrence is obtained for h� close to

81� and it extends up to
ffiffiffiffi
w�

b

q
’ 0:32. Consider u�

c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8 sin h�b

h�w�

q
. As 0 < h� < 90�,

ffiffiffiffiffiffiffiffiffiffi
8 sin h�

h�

q
is higher

than 2.26, a value obtained for 90�, and since
ffiffiffiffi
w�

b

q
is lower than 0.32, u�

c� is higher than 7.05. As a

result, x is very close to u�. Similarly, according to (25), x is not far from U since the difference
x � U ¼ a�c�

A is lower than 0:44
ffiffiffiffiffiffi
gR

p
. Therefore, for downward slugs, the velocity inside the plug

is close to the speed of propagation.
The inequality h1 < hi allows to infer further information. Obviously, h1 must be lower than the

highest possible value of hi. Now, as hi increases with h�, the maximum of hi is reached at h� ¼ 90�
(Fig. 10), yielding hi ¼ 56:6� thanks to (21), whence hi

2R ¼ 0:225. Therefore, h1
2R cannot exceed 0.225,

which shows that downward slugs are of large amplitude.
Let us look at an example. Fig. 11a shows the smooth profiles of the interface, with m ¼ 0,

n ¼ 1
3
, for h� ¼ 75� and three values of

ffiffiffiffi
w�

b

q
belonging to the instability domain of formula (34). On

the left, the curves end at h ¼ hI . We have h�

2R ¼ 0:37, c� ¼ 0:74
ffiffiffiffiffiffi
gR

p
, and hi ¼ 38:5� is obtained

from Eq. (21), i.e. hi
2R ¼ 0:11. The values of hI corresponding to

ffiffiffiffi
w�

b

q
equal 0.1, 0.2 and 0.4 are

approximately 25.6�, 34� and 47� (Fig. 11b). Therefore, hI is higher than hi for the highest value offfiffiffiffi
w�

b

q
. Roll waves exist when hi < h1 for

ffiffiffiffi
w�

b

q
¼ 0:1 and 0.2, and hI < h1 for

ffiffiffiffi
w�

b

q
¼ 0:4. Once h1 is
Fig. 10. Domain of downward slug flow occurrence DS in circular ducts for rough turbulent flow, m ¼ 0, n ¼ 1=3,
hD ¼ 90�, ~h ¼ 128:7�: –– neutral stability; – Æ – SðHÞ ¼ 0, Eq. (46); – – – SðhiÞ ¼ 0, Eq. (47).



Fig. 11. Downward waves in circular ducts with h� ¼ 75�, rough turbulent flow m ¼ 0, n ¼ 1
3
and three values of

ffiffiffiffi
w�

b

q
:

(a) the smooth profile of the interface; (b) the function S.
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chosen, the angle h2 is obtained from relation (19). Then, h2
2R is known and the value of the

wavelength can be read in Fig. 11a. Moreover, the speed of propagation x is deduced from
formula (29).

The representative point h� ¼ 75�,
ffiffiffiffi
w�

b

q
¼ 0:2 in Fig. 10 belongs to the domain of slugs, yielding

u� ¼ 8:99
ffiffiffiffiffiffi
gR

p
, U ¼ 9:49

ffiffiffiffiffiffi
gR

p
and x ¼ 9:74

ffiffiffiffiffiffi
gR

p
thanks to (15), (40) and (29). In this case hI ¼ 34�,

so that h1 must lie between 34� and 38.5�. If h1 ¼ 36� (h1R ¼ 0:19) is chosen, the relations (27), (41)
and (38) provide P ¼ 0:22qgR, and bLp ’ 1:38R. The length Lg is deduced from Fig. 11a with
bLg ’ 27:26R.

Obviously, the magnitude of all characteristic velocities is governed by the ratio w�=b, since x
and U are close to u�. In this connection it seems that w�=b larger than about 0.04 is necessary in
order to have no excessive values of the velocities. Thereby, in practice, the domain of downward
slug occurrence of Fig. 10 is reduced to a narrow range corresponding approximately to
w�=b > 0:04 and 60� < h� < 80�.

A glance at the curves of Fig. 11a reveals that a large part of the interface is of almost constant
height except close to the front where the slope of the interface is very steep, so that, on the whole,
the gaseous bubble looks close to being symmetrical.
7. Upwardly travelling waves

7.1. Necessary conditions for the existence of upward waves

Let us consider now the second case, with q ¼ �a�c�, which indicates that upwardly travelling
waves are obtained, with x < u.
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Relations (16) and (13) provide
x ¼ u� � c�; ð48Þ

u ¼ u� � c�
a � a�

a
; ð49Þ
with the consequence that (18) becomes
S ¼ 1� d�

d

� �1þn

1

"
� c�ffiffiffiffiffiffiffiffiffiffi

2gd�p
ffiffiffiffiffi
w�

b

s
1

�
� a�

a

�#2�m

: ð50Þ
Contrary to the first case, here x can be either positive, when u� > c�, with progressive waves, or
negative, which corresponds to regressive waves occurring for u� < c�. These two kinds of waves
are separated by steady flow configurations, x ¼ 0, achieved for u� ¼ c�: this relation represents
ffiffiffiffiffi

w�

b

s
¼

ffiffiffiffiffiffiffiffiffiffi
2gd�p
c�

ð51Þ
which decreases from
ffiffiffi
8

p
at h� ¼ 0, down to zero at h� ¼ H .

In the moving frame of reference the relative velocities are positive, and the jump condition

h2 > h1 prescribes dh
dn < 0. Expanding Eq. (17) close to h ¼ h� leads to a�

2
c�

2
d�D�

2gb
dh
dn ¼

ð1þ nÞE� þ ð2� mÞ gd�

u�c�. The right-hand side must be negative, which implies E� < 0, i.e.
h� > ~h: ð52Þ
That expresses exactly the instability condition for h� > ~h found in Section 3.1, which may be
written
 ffiffiffiffiffi

w�

b

s
< � ð1þ nÞ

ð1� m=2Þ
c�ffiffiffiffiffiffiffiffiffiffi
2gd�p E�: ð53Þ
For h < h�, S must be positive. As u is a decreasing function of h, we have u > u� and con-
sequently d > d� is necessary: this can only be fulfilled when h is higher than hd� , the second value
of h providing d ¼ d�.

When h > h�, S must be negative. As u
u� < 1, d must be lower than d�, which is always the case

up to H .
The derivative of S is
dS

dh
¼ ð1þ nÞc�a�

d�u�a
d�

d

� �2þn u
u�


 �1�m auE
a�c�

�
þ 4ð2� mÞb

ð1þ nÞk


:

At h ¼ h�, S ¼ 0 and dS
dh < 0, whereas at h ¼ ~h, dS

dh > 0 and at h ¼ H , dS
dh ! 1.

The sign of the derivative of S with respect to w�

b and of h � h� are alike, as it may easily be
checked. Thereby, contrary to downwardly travelling waves, S decreases with increasing w�

b for
h < h� and increases for h > h�, so that the root hI increases with

w�

b .
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Upward roll waves are constructed by piecing together smooth profiles resulting from the
integration of Eq. (17), S being now given by (50), with free discontinuities. The same conditions
as for downward roll waves must hold for hi, h1 and hI .

Concerning upwardly propagating slug flows, as in Section 6, they require h1 to be smaller
than hi, the condition (37) to remain still valid and SðHÞ to be negative which means, thanks to
(50):
1� D
d�

� �1þn
2�m

>
c�

u�
1

�
� a�

A

�
: ð54Þ
A global diagram similar to that of Fig. 9 is to be used (Fig. 12) and the process indicated at the

end of Section 6 in order to construct solutions still works, except that now h� and
ffiffiffiffi
w�

b

q
satisfy

(48), (49), (52) and (53) instead of (29), (30), (33) and (34).
For upwardly travelling slugs the relation (38) is replaced by P ¼ ðWU2

2D � gbÞqLp and (42) by
P ¼ �qgbLpSðHÞ. The length of the plug is given by
c�
2

f �2 ðf1 � F Þ � gð/ � u1Þ ¼
WU 2

2D

�
� gb

�
Lp

F
: ð55Þ
Fig. 12. Global diagram for upward slug flows: uI < u1 < ui, SðHÞ < 0.
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The relation (49) provides
U ¼ u� � c� 1

�
� F

f �

�
: ð56Þ
The jump is situated at the front of the gaseous bubble and it moves slower than the liquid inside
the plug.

By the method already used for downward slugs, the conservation of mass together with
relations (49) and (56) lead to v ¼ x. Therefore, the liquid moves faster than the gas.

The analog of formula (43) is
bLp

d�

D

� �1þn

1

"8<
: � c�ffiffiffiffiffiffiffiffiffiffi

2gd�p
ffiffiffiffiffi
w�

b

s
1

�
� F

f �

�#2�m

� 1

9=
; ¼ Fc�

2

gf �2 ðf1 � F Þ � F ð/ � u1Þ:
The same trends as in Section 6.2 can be derived concerning the variation of P and Lp.
7.2. The domain of upward slug occurrence

Similarly to downwardly propagating waves, it may easily be shown that slugs exist for very
small w�

b and that they disappear with increasing w�

b , either because hI becomes equal to hi or be-
cause SðHÞ becomes positive. Thus, the domain of upward slug flow is bounded by the graphs of
SðHÞ ¼ 0 and SðhiÞ ¼ 0, the function S being now given by (50), with the result:
c�ffiffiffiffiffiffiffiffiffiffi
2gd�p 1

�
� a�

A

� ffiffiffiffiffi
w�

b

s
¼ 1� D

d�

� �1þn
2�m

ð57Þ
and
c�ffiffiffiffiffiffiffiffiffiffi
2gd�p 1

�
� a�

ai

� ffiffiffiffiffi
w�

b

s
¼ 1� di

d�

� �1þn
2�m

; ð58Þ
hi and h� being connected by (21).
The branch of the neutral stability curve starts at ~h on the h� axis and for h� ! H , we haveffiffiffiffi
w�

b

q
¼ 1þn

1�m=2
DRTffiffiffiffi
8K

p
b�
! 1 as b� ! 0.

As for downward slugs the curve defined by (57) cuts the
ffiffiffiffi
w�

b

q
axis at hD. When h� ! H , an

expansion gives
ffiffiffiffi
w�

b

q
¼ 6 1þn

2�m RTA
ffiffiffiffiffiffiffiffiffi

2

K3b�3

q
! 1.

Concerning the curve of Eq. (58),
ffiffiffiffi
w�

b

q
! 0 is obtained for d� ! di, which means that h�

coincides with hi in this extreme case. This relation and (21) determine the corresponding value of

h�. When
ffiffiffiffi
w�

b

q
becomes infinite, a� tends to ai, which is only possible for h� ! H , and an expansion

provides, with the help of (24),
ffiffiffiffi
w�

b

q
¼ 24

19
1þn
2�m RTA

ffiffiffiffiffiffiffiffiffi
2

K3b�3

q
.

Taking into account hD < ~h < h� and the behaviour when h� is close to H , it appears that the
neutral stability curve lies above the curve of Eq. (58) and below that of Eq. (57). Consequently,



Fig. 13. Domain of upward slug floxv occurrence in circular ducts for rough turbulent flow, m ¼ 0, n ¼ 1=3,
~h ¼ 128:7�, he ¼ 138�: –– neutral stability; – Æ – SðHÞ ¼ 0, Eq. (57); – – – SðhiÞ ¼ 0, Eq. (58); - - - - u� ¼ c�.
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in the domain of instability corresponding to h� > ~h, SðHÞ cannot be positive, so that only
situations when S remains negative from h� up to H can occur.

Previous statements are corroborated when circular ducts are considered (Fig. 13). The curve
corresponding to the condition to be fulfilled at H lies entirely in a region already forbidden by the
instability condition.

Concerning the curve SðhiÞ ¼ 0, the value of h� for
ffiffiffiffi
w�

b

q
¼ 0 is he ¼ 138� (he

2R ’ 0:872 and
de
2R ’ 1:207).

Finally, the domain of upwardly travelling slugs may be shared into two regions, progressive
slugs (UPS) with u� > c� and regressive slugs (URS) with u� < c�, represented in Fig. 13.

Remembering that u�

c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 sin h�

h�
b
w�

q
, u� is much higher than c� when w�

b is low, provided h� be not

close to 180�, say for h�
6 160�. Then, according to (48) and (56), we have x ’ U ’ u�, similarly to

downward slugs. On the contrary, when w
b is not low u� and c� are generally of the same order of

magnitude, with the result that the full relation (48) is to be kept, whereas (56) may be simplified
to U ’ u� for f � is close to F . Steady flows corresponding to u� ¼ c� belong to this case.

For sufficiently large values of w�

b , u� is negligible with regard to c�, therefore (48) may be
approximated by x ’ �c�, U is very low according to (56) and the height hI defined by S ¼ 0
is necessarily close to h�. Thereby, regressive slugs are of very small amplitude.

Similarly to downward slugs, information about the amplitude is obtained, but here it origi-
nates in the inequality hI < h1. The value of h1 must be higher than the lowest possible value of hI ,

which fulfills ð d
d�Þ

1þn
2�m � 1 ¼ c�ffiffiffiffiffiffiffi

2gd�
p

ffiffiffiffi
w�

b

q
ða�a � 1Þ according to (50). Now, at given h�, hI minimum is

obtained when w�

b ! 0. The corresponding solution is d ¼ d�, which is satisfied by h�d (h�d exists
since h� is larger than ~h). As h�d is a decreasing function of h�, the smallest value of h�d is obtained
when h� ¼ H , yielding hI ¼ 90�. Therefore, the minimum of h1 is equal to 90� and h1

2R is necessarily
higher than 0.50.

Let us consider for example h� ¼ 155� yielding hi ¼ 142� from Fig. 5. The profile of the

interface is drawn in Fig. 14a for three values of
ffiffiffiffi
w�

b

q
. Similarly to Fig. 11a, every curve ends at



Fig. 14. Upward waves in circular ducts with h� ¼ 155�, rough turbulent flow m ¼ 0, n ¼ 1=3, and three values of
ffiffiffiffi
w�

b

q
:

(a) the smooth profile of the interface; (b) the function S.

544 A. Dyment, A. Boudlal / International Journal of Multiphase Flow 30 (2004) 521–550
h ¼ hI . If
ffiffiffiffi
w�

b

q
¼ 0:2 is chosen, hI ¼ 121� is provided from Fig. 14b, so that in order to construct

slugs, h1 must lie between 122� and 142�. The longest slug is obtained for h1 ¼ hI (h1
2R ¼ 0:765).

Then (15), (48), (56), (27), (43) and (55) provide u� ¼ 7:07
ffiffiffiffiffiffi
gR

p
, x ¼ 5:16

ffiffiffiffiffiffi
gR

p
, U ¼ 7:04

ffiffiffiffiffiffi
gR

p
,

P ¼ 0:335qgR, W ¼ 1:045w� and bLp ¼ 0:21R. The length of the bubble is deduced from Fig. 14a
with bLg ’ 15R.
8. Validation

8.1. The liquid and gas superficial velocities

For experimental validation, three points will be considered: (i) the transition boundaries and
domains of occurrence; (ii) the relation connecting the speed of propagation x with the velocity U ;
(iii) the limitation in height of the liquid carpet.

(i) Flow regimes and the transition boundaries are usually plotted using the liquid and gas
superficial velocities, �u and �v with A�u and A�v the liquid and gas volumetric flow rates (Barnea and
Taitel, 1986; Taitel and Barnea, 1990).

By definition, A�u ¼ 1
T

R T
0

audt where T ¼ L
x is the period of the slug and where the integral is to

be computed at constant x. The variable n can be used instead of t. For downward slugs, formulae
(29) and (30) allow us to write LA�u ¼

R L
0
audn ¼ ðu� þ c�ÞðALp þ

R Lg
0

adnÞ � a�c�L. Finally, thanks
to (17), h may take the place of n with the result
�u ¼ u� þ c�

Lp þ Lg

Lp

"
þ 1

b

Z H

h1

1

 
� a�

2

c�
2

a2c2

!
a
A
dh
S

#
� a�c�

A
; ð59Þ
Lp, Lg and S being given by (43), (44) and (31).
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The continuity balance for both liquid and gas involves
Fig. 1

UPS:

h1 ¼ 3
�uþ �v ¼ U ; ð60Þ

whence, taking (40) into account,
�v ¼ u� þ c�

Lp þ Lg

Lg

"
� 1

b

Z H

h1

1

 
� a�

2

c�
2

a2c2

!
a
A
dh
S

#
: ð61Þ
At the transition between roll waves and slugs, we have h1 ¼ hi and Lp ¼ 0, so the superficial
velocities at the onset of slugging are
�ui ¼ ðu� þ c�Þ Mi

bLi
� a�c�

A
ð62Þ
and
�vi ¼ ðu� þ c�Þ 1

�
� Mi

bLi

�
; ð63Þ
with
bLi ¼
Z H

hi

1

 
� a�

2

c�
2

a2c2

!
dh
S

and Mi ¼
Z H

hi

1

 
� a�

2

c�
2

a2c2

!
a
A
dh
S

:

Obviously, these velocities can be derived from h� and
ffiffiffiffi
w�

b

q
thanks to (15) and (21). Conse-

quently, the domain of downward slug flow of Fig. 10 can be represented in the superficial
velocities plane.

Similar results are obtained for upward slugs by changing c� into �c� in previous formulae.
The domains of slug flows in circular ducts corresponding to those of Figs. 10 and 13 are

plotted in Fig. 15. It appears that the former representation was misleading because downward
5. Domains of slug occurence in circular ducts for rough turbulent flow, m ¼ 0, n ¼ 1=3. DS: downward slugs;

upward progressive slugs; – – – SðhiÞ ¼ 0; – Æ – SðHÞ ¼ 0. The dot represents the example, h� ¼ 75�,
ffiffiffiffi
w�

b

q
¼ 0:2,

6�.
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slugs are proved to be the principal ones since they occupy a much larger domain of the velocities
plane than upward slugs. In all probability, due to the narrowness of their domain, upward
progressive slugs are difficult to detect, and the occurrence of regressive slugs looks most unlikely.
The example given in Section 6.3 has been represented in Fig. 15: �u=

ffiffiffiffiffiffiffiffi
2gR

p
¼ 1:29, �v=

ffiffiffiffiffiffiffiffi
2gR

p
¼ 5:41

are obtained, yielding �u ¼ 0:64 mm/s, �v ¼ 2:68 mm/s for 2.5 cm in diameter. Relatively low values
of the liquid superficial velocity are only obtained in the vicinity of the corner in the DS domain
of Fig. 15. Indeed, the actual domain of downward slug occurrence is very small, as already
predicted in Section 6.3. This explains why slugs of this kind are so seldom observed.

For given �u and �v, the three parameters h�, w�

b and h1 are connected by (59) and (61). Therefore a
supplementary datum is necessary for closure. It may be the ratio W

b as, according to (41), (60) and
(15), we have
Fig. 1

Barne
W
b
¼ w�

b

� �1�m
2 d�

D

� �nþm
2

ffiffiffiffiffiffiffiffiffi
2gD

p

�u þ �v

� �m

: ð64Þ
Of course, the use of the incoming velocities �u and �v and of W
b in order to identify a slug flow by

means of (59), (61) and (64) seems to have more physical significance than that of h�, w�

b and h1,
because �u, �v and W

b may be prescribed in advance in laboratory experiments. However, once �u and
�v have been chosen inside the domain of occurrence, the value of W

b is to be adjusted in order to
satisfy the conditions hI < h1 < hi, which cannot be expressed simply with the help of �u, �v and W

b .
The maps of progressive slugs, both downward and upward, are superimposed in Fig. 16 on the

experimental results by Barnea et al. (1980) for water and air in a duct of 0.025 m in diameter,
with a 5� inclination. For this value of R, the comparison between Figs. 10 and 13 and Fig. 3
shows that the whole DS domain and the major part of the UPS domain belong to the region of
6. Comparison with experiments for R ¼ 1:252� 10�2 m and b ¼ 5�. Dots represent the experimental data by

a et al. (1980). Theoretical onset of slugging, turbulent flow: –– m ¼ 0, n ¼ 1=3; - - - - m ¼ 0, n ¼ 0.



A. Dyment, A. Boudlal / International Journal of Multiphase Flow 30 (2004) 521–550 547
rough turbulent regime. It may be checked that though not accurately predicative, the proposed
model of downward slugs provides a satisfactory order of magnitude estimate.

Comparison with other experimental data by Barnea et al. (Barnea et al., 1980, 1982; Barnea
and Taitel, 1986) have been made by varying the diameter and the inclination: the agreement
remains good, except when the slope is very slight (b6 1�), because in this case, the assumption
that gravity is dominant is no longer fulfilled.

No slug has been observed by Barnea et al within the upward domain of Fig. 16. Various
reasons may be advanced to explain this fact. At first, as previously forecast, this domain may
have not been explored owing to its narrowness. Another argument, related to the interfacial
stress constitutive law, may be put forward. For upward slugs, u is higher than v as stated in
Section 7, so the liquid is now the ‘‘driving’’ medium and then the liquid density should interfere
in the interfacial stress instead of the gas density (Brauner and Moalem Maron, 1989), with the
consequence that the interfacial stress may become no more negligible (Appendix B).

Nevertheless, upwardly propagating slugs certainly exist as large bubbles with the nose pointing
against the flow, according to the sketch of Fig. 12, have been observed (Bendiksen, 1984), a
statement which will be born out below.

8.2. The relation between the characteristic velocities

(ii) One of the semi-empirical laws introduced within the frame of the classical approach in
order to close the set of equations is the relation between x and U . Usually
x ¼ CU þ Ud ð65Þ

is set where Ud is the so-called drift velocity (Taitel and Barnea, 1990).

Various expressions of C and Ud have been proposed resulting from dimensional analysis and
measurements achieved in circular ducts. Indeed, for downflows, both C and Ud are not well-
known. The factor C is close to 0.9 in vertical motion and it may exceed 1.2 in almost horizontal
ducts, for which some authors claim that Ud is negligible.

The comparison of formula (65) with (25) and (26) reveals that in the present theory, C ¼ 1 and
that Ud only depends on the critical state. In fact, C is a velocity profile correction factor (Taitel
et al., 2000), so it is not surprising to find C ¼ 1 within the frame of one-dimensional theory.
Concerning downward slugs, we have seen at the end of Section 6.3 that, being lower than
0:44

ffiffiffiffiffiffi
gR

p
(because of h� < 90�), the term Fa�c� is negligible, a result consistent with most exper-

imental data.
Conversely, for upward slugs, we have Fa�c� > 1:15

ffiffiffiffiffiffi
gR

p
(because of h� > 138�). Corresponding

to this case, experiments have shown that x is lower than U and that Ud is negligible (Bendiksen,
1984), a result which agrees with formula (26) and makes the occurrence of upward slugging
highly probable.

8.3. The limitation in height

(iii) Regarding the thickness of the liquid layer, an upper limit equal to 0.225 has been found in
Section 6 for h1

2R in case of downward slugging. It is consistent with experiments by Andreussi and
Persen (1987), who have observed mean thicknesses of about a quarter of the diameter. This
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limitation in height and the fact that Lp is much lower than Lg makes �v higher than �u (Figs. 15 and
16).

Concerning upward slugs, h1 is higher than R as shown in Section 7, a result which cannot be
checked due to lack of experimental data.
9. Conclusion

A simple theoretical model of periodic gas–liquid slugs in inclined ducts of arbitrary shape has
been worked out. The leading thread of the approach lies in the fact that roll waves and slugs look
like linked elements of a common process, the smooth interface being governed in both cases by
the same equations and the free bores being replaced by choked bores when the roll waves pattern
is replaced by the slug flow one.

The new model presents a universal character, and for this reason it ensures a relative simplicity
of application. It does not need any supplementary constitutive law for closure, except the friction
law at the wall. The cross-section interferes only by its shape, not by its size, as long as the friction
law is valid and as the superficial tension remains negligible.

The case of circular ducts has been investigated and maps of slug occurrence have been dis-
played. Owing to all the simplifications, no accurate agreement with experiments was expected.
Surprisingly, the predicted onset of downward slugging, the most important one, is close to that
observed experimentally. Another interesting result is the prediction of upward slugging, which
may be related to the ‘‘bubble turning’’ phenomenon (Bendiksen, 1984), a troublesome problem
unsolved until the present time (Dukler and Fabre, 1994).

Finally, in spite of strong assumptions, the proposed model turns out to be able to put forward
the main properties of periodic slug flows in down sloping ducts with a low pressure gradient
along the conduit. It may serve in the future as a guide for further developments. Extension to
large inclination may easily be undertaken, with the result that slope and friction will interfere
separately, and not only by their ratio. The task is more difficult if slugs in horizontal and up-
wardly inclined ducts are considered as the effects of gas motion and pressure gradient cannot be
neglected for these flows. In this case, owing to the lowness of all friction factors, the gas must
move significantly faster than the liquid in order to carry the liquid away against the antagonistic
effect of the gravity. Then, the liquid layer is governed by the full equation (B.1) of Appendix B,
which is not analytically manageable. Concerning the discontinuities, they still exist, as a definite
value of the interface slope is still provided by (B.1), yielding hðnÞ monotonous. As a matter of
fact, the analysis is complicated on account of the small gaseous bubbles distributed along the
liquid plugs. These dispersed bubbles probably result from the intense melting of both fluids, with
zones of reverse flow at the ends of each large bubble, making the assumption of one-dimensional
motion highly questionable.
Appendix A

Resulting from (3), we have k2 dk
dh

dE
dh ¼ 4 db

dh ðk dk
dh � a d2b

dh2Þ � kE
2
ðdk
dhÞ

2
. The behaviour of d and E at

h ¼ 0 and h ¼ H indicates that the equation E ¼ 0 has necessarily an odd number of roots, for
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which dE
dh and db

dh have the same sign. As b cancels at the bottom and at the top, the assumption
d2b
dh2 < 0 means that b has only one maximum, say bW at h ¼ hW where E is positive, as a < bk, and
dE
dh negative. For the lowest root of E ¼ 0, say ~h, dE

dh is positive if
db
dh > 0, which is impossible as that

requires another root, lower than ~h: then db
dh < 0 is necessary, with the result ~h > hW . Moreover,

as E ¼ 0 and dE
dh > 0 cannot be achieved for h > hW , no root higher than ~h exists. Consequently, ~h

the only root.
Thus finally, dE

dh is always negative, so that d is a concave function with one maximum.
Appendix B

Thanks to u ¼ x � q
a and v ¼ x, the momentum equations for the liquid and the gas are
1

�
� q2b

ga3

�
g
dh
dn

� gb þ 1

q
d�p
dn

þ wu2

2d
� e�wq2b

2a3
¼ 0
and
1

q
d�p
dn

þ vw0x2ðK � kÞ
8ðA � aÞ þ e�wq2b

2a2ðA � aÞ ¼ 0;
where vq is the gas density, �p the pressure at the interface (equal to the gas pressure), w0 the gas
friction factor at the wall and �w the friction factor at the interface. According to Brauner and
Moalem Maron (1989), e ¼ v when x > u and e ¼ �1 when x < u.

The elimination of �p leads to
1

�
� q2b

ga3

�
dh
dn

� b þ wu2

2gd
� vw0x2ðK � kÞ

8gðA � aÞ � e�wq2Ab
2ga3ðA � aÞ ¼ 0: ðB:1Þ
Let us take into account v � 1 and consider that all friction factors are of the same order of
magnitude. We suppose that the liquid velocity satisfies
u � v1=2x;
which is met in particular when u � x, i.e. u � v.
If x > u, the two last terms in Eq. (B.1) are negligible and Eq. (14) is recovered. On the

contrary, if x < u the last term in (B.1) is to be kept, except when u is close to x, making both q
and �w very low.
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